南湖新闻网讯(通讯员 刘鑫)近日,我校动物科学技术学院、动物医学院苗义良团队与生命科学技术学院陈振夏团队合作揭示了猪克隆胚胎发育过程中组蛋白甲基化H3K9me3、H3K27me3以及DNA甲基化的重编程障碍,以及克服上述重编程障碍并促进猪克隆胚胎发育的两种新方法。研究成果以“TDG is a pig-specific epigenetic regulator with insensitivity to H3K9 and H3K27 demethylation in nuclear transfer embryos”为题在Stem Cell Reports发表。
近年来,伴随CRISPR/Cas9基因精确编辑体系的发展,克隆技术在猪分子育种上的应用潜力逐渐显现,一批与优势经济性状和抗病性状相关的克隆猪模型被纷纷创制。而由于猪和人类生理结构的相似性,克隆猪模型还可应用于人类器官再造和疾病病理研究,这都反映出猪克隆技术在农业育种和生物医学领域存在巨大的应用前景。非瘟疫情影响下,克隆技术还能应用于地方种、引进种和新培育猪品种的种质资源保存。
不过自克隆羊“多莉”诞生以来,哺乳动物克隆胚胎早期发育的高损率(克隆囊胚率仅10-15%,受精囊胚率可达30-80%)和极低的出生效率(克隆动物约1-2%,受精动物可达40-60%)一直是限制克隆技术推广应用的瓶颈问题。目前的主流观点认为,受体卵母细胞对供体细胞基因组存在天然的重编程障碍,导致克隆胚胎出现表观遗传修饰的异常富集和相应基因的异常表达,而寻找克服重编程障碍的有效方法一直是突破猪克隆技术应用壁垒的研究热点。
本研究首次结合近年来开发的低细胞量转录组测序(Smart-seq)技术,从全基因组层面鉴定了猪克隆胚胎在合子基因组激活阶段(4细胞期)异常表达的基因和基因组区域。同时,利用低细胞量的全基因组DNA甲基化测序(PBAT-seq)和染色质免疫共沉淀测序(ULI-NChIP-seq)技术,确定了上述异常表达的基因启动子和基因组区域中存在高水平富集的DNA甲基化和组蛋白甲基化H3K9me3、H3K27me3。最重要的是,针对这些重编程障碍,该研究开发了两项有效提高猪克隆胚胎发育能力的新方法:1)联合使用显微注射技术在克隆胚胎中过表达H3K9me3的去甲基化酶KDM4A,并向胚胎培养液中添加H3K27me3编写酶抑制剂GSK126;2)使用诱导表达与DNA去甲基化相关的胸腺嘧啶糖基化酶TDG的供体细胞株构建克隆胚胎。上述克服途径均不同程度地调整了猪克隆胚胎基因和基因组区域的异常表达,并最终使克隆胚胎的囊胚率提高近两倍。
猪克隆胚胎在合子基因组激活阶段的重编程障碍和克服途径
我校动科动医学院副研究员刘鑫和王涛博士、生命科学技术学院陈露博士后为论文的共同第一作者,我校苗义良教授和陈振夏教授为论文通讯作者。本研究受到了国家重点研发计划和国家自然科学基金的资助。
审核人:苗义良
【英文摘要】
Pig cloning by somatic cell nuclear transfer (SCNT) frequently undergoes incomplete epigenetic remodeling during the maternal-to-zygotic transition, which leads to a significant embryonic loss before implantation. Here, we generated the first genome-wide landscapes of histone methylation in pig SCNT embryos. Excessive H3K9me3 and H3K27me3, but not H3K4me3, were observed in the genomic regions with unfaithful embryonic genome activation and donor-cell-specific gene silencing. A combination of H3K9 demethylase KDM4A and GSK126, an inhibitor of H3K27me3 writer, were able to remove these epigenetic barriers and restore the global transcriptome in SCNT embryos. More importantly, thymine DNA glycosylase (TDG) was defined as a pig-specific epigenetic regulator for nuclear reprogramming, which was not reactivated by H3K9me3 and H3K27me3 removal. Both combined treatment and transient TDG overexpression promoted DNA demethylation and enhanced the blastocyst-forming rates of SCNT embryos, thus offering valuable methods to increase the cloning efficiency of genome-edited pigs for agricultural and biomedical purposes.
论文链接:https://www.cell.com/stem-cell-reports/fulltext/S2213-6711(21)00489-6